Integrating with ClearPass HTTP APIs

HTTP based APIs

The world of APIs is full concepts that are not immediately obvious to those of us
without software development backgrounds and terms like REST, RPC, XML,
JSON, SOAP, WDSL etc can be initially overwhelming. Reviewing some of the
common characteristics found in many of today’s HTTP based APIs can provide a
solid foundation for further research on more advanced topics such as RESTful
API design.

The following high description aims to provide a basic understanding of the
components that are typically used to describe an APIs design and hence the
critical information needed for a successful API integration.

Who: API Authentication

Typically APIs are authenticated as they are providing access to data
programmatically that would otherwise only be available through a user login
workflow. There are many different approaches to authenticating and
authorizing API access and these often differ based on the class of data being
accessed.

Some of the most common API authorization techniques used in API design are:

* Basic Authorization (presented in HTTP Header - Base64 user:password)
* API Key (presented in HTTP header or in API payload)
* OAuth 2.0 (Authorization framework for authorizing access to your data)

Deep discussion of each of these authorization options is outside of the scope of
this overview document but given the new support for OAuth2 based
authorization in ClearPass, the following section will discuss the technology and
how it is applied to the new ClearPass API surface.

Where: URL Location

Anyone wanting to interact with an API needs to know where to find the API
server and importantly the URL path to the resource they are interested in. This
is no different to a URL that would be typed into a web browser and the API
documentation should detail where to find the resource you wish to interact
with.

All of the new ClearPass APIs can be accessed from the root location of /api
from any of the nodes in your ClearPass cluster. As with any many of the
functions within the ClearPass cluster deployments, read-access is available from

all nodes in the cluster and ClearPass will internally proxy any write requests
back to the Publisher node to ensure database consistency.

The following are examples of published API endpoints available from the
ClearPass server as part of the 6.5 release.

OAuth2 endpoint for https://<ClearPass FQDN>/api/oauth
authorization:

Guest endpoint to retrieving https ://<ClearPass FQDN>/api/guest
guest accounts:

How: HTTP Method

The HTTP method of an API describes how the server is expecting to receive the
API request. A web browser by default is using a HTTP GET when downloading a
web page and a HTTP POST when a user fills out a form and submits it to a
server. APIs work in a very similar fashion to the web browser with the
additional capability of being able to take advantage of other HTTP methods such
as PUT (replace an object on the server), DELETE (remove an object on the
server) or potentially PATCH (update an object on the server). Using the HTTP
method to signal the intent of an API call is at the heart of the REST API design
principal which is considered a best practice for modern API design.

The new ClearPass APIs have adopted this design pattern of leveraging the HTTP
method to indicate the intent of the API transaction. For example, the following
table shows some examples of how the HTTP method could be applied to the
/api/guest endpoint.

Endpoint HTTP Method | Intention

/api/guest GET Retrieve the collection of currently
managed guest accounts

/api/guest/{id} GET Retrieve the guest account identified by
{id}
/api/guest POST Create a new guest account based on

contents of API Payload

/api/guest/{id} PUT Update guest user (full replace)
/api/guest/{id} PATCH Partial update of guest user (merge)
identified by {id}

/api/guest/{id} DELETE Delete a guest user identified by {id}

What: API Payload / Content

The API content needs to be presented in a format that can be understood by the
server and the specifics are the format detailed in the API documentation. Some
of the more common formats supported by APIs are:

* JSON (application/json)

* XML (application/xml)

* Form Encoded (application/x-www-form-urlencoded)
* Plain Text (text/plain)

Also included in the list above is the value that needs to be included the HTTP

Content-Type header so the API server knows what format you are sending in
the API payload.

The ClearPass APIs are designed to expect the JSON content type when the API

call requires a HTTP body to be submitted (typically in unsafe operations such as
POST, PUT, PATCH and DELETE).

APl Documentation

Detailed documentation is available for the ClearPass APIs by clicking on the API
Explorer link from the top right hand corner of the API Services configuration
page from Administration > API Services > API Clients menu option.

Home » Administration » API Services » API Clients

. &y Create API client
API Clients 5
& API Explorer
The API clients you have defined are listed below.

Filter:

& Client ID Grant Types Access Token Operator Profile

Q QuickAccess password refresh_token 8 hours BYOD Operator

-... Back to API services

Alternatively the documentation can be directly accessed from the following
URL:

http://<ClearPass-Server-IP-or-FQDN>/api-docs

Accessing this page will display a catalog of available API entry points based on
the various sub-systems of ClearPass that are currently exposed through the new
HTTP APIs.

Qrv

NETWORKS

ClearPass Guest

API Explorer

API Services Versions
ApiFramework ApiClients vi
GuestManager Configuration, Device, Guest vl
Onboard Certificate, CertificateChain, CertificateImport, CertificateNew, CertificateReject, CertificateRequest, vl

CertificateRevoke, CertificateSign

OperatorLogins GetPrivileges vl
Platform ClusterDbSync vl
SmsServices SmsSend vl

Selecting one of the API entry points will then display the interactive API
document for all of the API methods available for that ClearPass resource. The
following screenshot shows the example of the ClearPass Guest resource and the
API methods available.

|arvba ClearPass Guest

NETWORKS

API Explorer - GuestManager-v1

Back to API Explorer

Authorization: Enter Authorization header value here

Guest : Manage guest accounts Show/Hide List Operations ~ Expand Operations
/guest Get a list of guest accounts
/guest Create a new guest account
/quest/{guest_id} Get a guest account
N /guest/{guest_id} Update some fields of a guest account
m /quest/{guest_id} Replace a guest account
EIS N /guest/{guest_id} Delete a guest account
Device : Manage device accounts Show/Hide List Operations Expand Operations
Configuration : Manage settings in Configuration -> Guest Manager Show/Hide List Operations Expand Operations

API Configuration Options

Several global configuration options can be modified by browsing to the
Administration > Plugin Manager menu option of the ClearPass Guest
administrative interface and clicking on the Configuration option of the API
Framework plugin.

ﬁ API Framework 6.5.0 Enabled
&

Provides application programming interface (API) services.

DaConfiguration i About

From the resulting page allows options such as token lifetimes, logging levels
and support for cross origin access typically associated with client side
technologies such as javascript.

Home » Administration » Plugin Manager

API Framework 6.5.0-31140 Configuration

Set the configuration options for API Framework 6.5.0-31140.

Configure API Framework 6.5.0-31140

a

8 : | hours v
Access Token Lifetime: = Specify the default lifetime for an OAuth2 access token.
This parameter may be configured separately for each API client.

15 7/ | minutes <
Authorization Code Lifetime: = Specify the lifetime of an OAuth2 authorization code.
This parameter may be configured separately for each API client.

14 ;| days v
Refresh Token Lifetime: specify the lifetime of an OAuth2 refresh token.
This parameter may be configured separately for each API client.

N

Standard (Recommended) — log basic information *
* API Logging: = Select an option for logging API-related events.
‘Extended’ will log all API calls.

Allowed Origins: gecurity settings for Cross-Origin Resource Sharing (CORS).
List the allowed origins for browser-initiated API requests, one per line.
Specify * to allow all origins. This may also be used as a wildcard, e.g. *.example.com.
Leave blank to never allow cross-domain API requests.

™ Ssave Configuration

* required field

Default Lifetimes

Although token lifetimes can be configured on an individual basis for each API
Client defined from the Administration > API Services > API Client configuration
page, the global default token lifetimes can be updated from the plugin
configuration.

Logging

During development of a new App that is leveraging the ClearPass APIs, there
maybe a requirement to increase the logging level from the default Standard
(basic) logging detail. This level of detail can be updated from the plugin
configuration and the log output is available from the Administration > Support
> Application Log menu option.

It is recommended that post any development testing of APIs that the logging
level be returned to the default standard (basic) logging detail.

Cross Origin Resource Sharing (CORS) Support

The ClearPass APIs provide an option to enable server side support for Cross
Origin Resource Sharing by specifying a whitelist of either individual servers or
domains that should be permitted to access the API resources from a browser
interface even though the initial webpage did not originate from the ClearPass
server.

Modern web browsers have inbuilt security to protect users from malicious
websites that attempt to access 3™ party websites (or post data to) whilst a user

is browsing their intended destination. By enabling the CORS support on
ClearPass the APIs can be accessed in this manner and is typically used in
development environments where a local webserver on the development host is
used to temporarily host the basic HTML, CSS whilst the content is drawn from
the API responses.

As noted in the user interface screenshot above, wildcards can be used to
nominate an entire domain or potentially whitelist all origins during a
development and testing phase. For a production deployment, it is
recommended that only specific hosts or known domains be included in the
CORS whitelist.

Summary

The following table summarizes the various API conventions that make up the
new ClearPass HTTP based APIs.

Who API OAuth2 See following section for
Authentication grant types supported

Where URL Location | /api/<resource> | All APIs available from the
root /api

How HTTP Method | GET, POST, PUT, | REST based design to use

PATCH, DELETE | HTTP Method as the intent of

the API call

What API Payload JSON Not required for read-only
GET requests

APl Authorization — OAuth2

The industry has largely aligned on the use of OAuth2 and / or OpenID Connect
as the solution for providing authentication and authorization for developer API
access. The OAuth 2 RFC 6749 specification accommodates various different API
access scenarios ranging from simple server to server integration to the
increasingly common use case of a user of a particular service granting
authorized access to all or a subset of their data to a 34 party application.

Overview

OAuth 2.0 is a simple and secure authorization framework. It allows applications
to acquire an access token for authorized API access via various different
workflows supported within the OAuth2 specification. Once an application has
an access token, it can access the various API's serviced by server platform either
to configure the platform itself or act on behalf of a related user. At a very high
level, authorization with OAuth can be accomplished in the following steps.

* Decide on the use case for API Access - administrative configuration of
the server platform or managing the hosted data on behalf of a user.

* Create API Client definition on the server that matches the above use case

* Request an Access Token using the Client ID details from the API client
definition created in the previous step.

* Make authorized API calls to the server APIs by including the Bearer
<access_token> in the HTTP Authorization header.

OAuth Basics

The best way to understand the different use cases for OAuth?2 is to start with the
various roles that make up a possible OAuth?2 transaction.

Resource Owner

The resource owner is the person or application that owns the data that is to be
shared. For example, a user on Facebook or Twitter could be a resource owner
and the resource they own is their data on these social platforms. Typically the
resource owner is thought of as a person but it could also be an application. The
OAuth 2.0 specification supports different workflows for each of these use cases.

Within the context of ClearPass, the resource owner can be thought of a the
Sponsor or ClearPass operator that is acting upon the data stored within the
ClearPass platform

Resource Server

The resource server is the server hosting the resources. For example, a platform
such as Facebook or Twitter would be considered a resource server. It is
essentially the server hosting the protected content that will be accessed via the
APlIs.

Relating this back to ClearPass API use cases the resource server is the ClearPass
server or cluster of server depending on the deployment type. All nodes within
the ClearPass cluster can service read-only API calls and any unsafe API
operations (POST, PUT, DELETE) will be internally proxied to the ClearPass
publisher for database synchronization.

Client Application
The client application is the application requesting access to the protected
resources stored on the resource server.

This will be the application that is being developed to leverage the APIs and data
hosted by the ClearPass platform. This App could take many forms, from a native
mobile App through to a server side script that is run on a periodical basis.

Authorization Server

The authorization server is authorizing the client application to access the
resources of the resource owner. The authorization server and the resource
server can be deployed as part of the same server, but the OAuth 2.0
specification does not dictate whether they should be collocated or separated.

In the case of the ClearPass platform and in the interests of simplicity it is fair to
assume the resource server and authorization server are co-located on the same
server.

OAuth2 Client

Before any OAuth transactions can be processed, the first step is to register a
new app definition. When registering a new app with the ClearPass
Authorization Server, basic information such as application name and the
OAuth2 grant type are specified.

From the ClearPass Guest administration interface a new OAuth2 API client can
be created by browsing to the Administration > API Services > API Clients web
page. Click on the Create API client button in the top right corner and following
form can be completed to suit the requirements of the current API integration.

Home » Administration » API Services » API Clients

Create API Client

Use this form to create a new API client.

Create API Client

QuickAccess
The unique string identifying this API client. Use this value in the OAuth2 “client_id” parameter.

* Client ID:

Description:

Use this field to store comments or notes about this API client.

Enabled: ® Enable API client

BYOD Operator =

% .
Operator Profile: The operator profile applies role-based access control to authorized OAuth2 clients.

This determines what API objects and methods are available for use.

A

| Username and password credentials (grant_type=password) ~

* Grant Type:
yP Only the selected authentication method will be permitted for use with this client ID.

 This client is a public (trusted) client
Public clients have no client secret.

Public Client:

& Allow the use of refresh tokens for this client
Refresh Token: An OAuth2 refresh token may be used to obtain an updated access token.
Use grant_type=refresh_token for this.

8 5| hours :
Specify the lifetime of an OAuth2 access token.

Access Token Lifetime:

14 s | days s
Specify the lifetime of an OAuth2 refresh token.

3 Create API Client m

Refresh Token Lifetime:

* required field

A more detailed discussion of the various options when configuring an OAuth2
client is included in Getting Started chapter of this document.

The result of registering an OAuth?2 app is a client id and client secret. These will
need to be retained and shared with the App developer to enable them to
successfully authorize the API access and make subsequent API calls.

Client ID and Secret

After registering your app, you will receive a client ID and a client secret. The
client ID is considered public information, and is used to build login URLSs, or

included in JavaScript source code on a page. The client secret must be kept
confidential. If a deployed app cannot keep the secret confidential, such as
JavaScript or native apps, then the secret is not to be used.

Authorization Grant Types

OAuth 2 provides several "grant types" for different use cases. The grant types
defined are:

e Authorization Code for apps running on a web server
o Implicit for browser-based or mobile apps

e Password for logging in with a username and password
e C(lient credentials for application access

Note: For the initial release of OAuth2 support for API authentication and
authorization, ClearPass 6.5 will only be supporting the password and client
credentials grant types. Subsequent releases will add the additional grant types
as the customer and partner uses cases drive the need for these browser based
workflows. The description of how the Authorization and the Implicit Flow grant
types differ from those currently supported by ClearPass, have been included in
Appendix A for completeness.

Resource Owner Password

OAuth 2 also provides a password grant type, which can be used to exchange a
username and password for an access token directly. This is often compared
with HTTP basic authentication as the same credentials are being exchanged but
has the same security benefits of the other OAuth2 grant types in expiring access
token and the ability to refresh the access token without the need to cache or
resubmit the user credentials.

Since this requires the application to natively collect the user's credentials, this
grant type should only be used for Apps with a direct relationship (first party)
with the Authorization server. A real world example could be the official mobile
App for a social networking site versus allowing 3rd party developers leverage
API’s to develop their own mobile experience for the social platform (they should
be leveraging the Implicit flow).

The following diagram shows the transaction flow of the Password grant type.

Authorization
+ 1t Party Resource
Resource Server App (Client) Owner
2 3
a8 4 = A
'3 PP
OAuth2

APl Access «—=»

1. User enter credentials directly into the App’s native user interface

* App should not cache user credentials under any circumstances
2. The App submits the user credentials to the Authorization Server.

* Includes grant_type=password, user, password, client_id, client_secret *
* *client_secret is not required is the OAuth2 App is defined as a public client
3. Resource Server returns access token for use in subsequent API calls

* Includes access_token, expiry time, token_type=bearer, refresh_token
4. The App includes access token in the HTTP Authorization header.

¢ Includes Bearer access_token
5. Resource Server returns authenticated API payload.

Client Credentials

The simplest grant type offered by OAuth2 doesn’t include a 3rd party user at all
and is essentially intended for server-to-server integrations for updating the
application server configuration. In this case, applications need a way to get an
access token for their own user and do this outside the context of any specific
user. OAuth provides the client credentials grant type for this purpose.

Given the simplicity of this grant type, many developers may leverage its basic
workflow to recover an access token so they can get and up running quickly with
the API’s. That being said, client credentials should never be used in production
where an untrusted 3rd party developer has access to the client secret.

The following diagram shows the transaction flow of the client credentials grant

type.

Authorization

+ 1st Party
Resource Server App (Client)
1 2
¢ RI 3 4 o R,
éa - . d;‘
OAuth2

API| Access «—»

1. The first party App submits an access token request to the Authorization
Server.

* Includes grant_type=client_credentials, client_id, client_secret
2. Resource Server returns access token for use in subsequent API calls

* Includes access_token, expiry time, token_type=bearer
3. The App includes access token in the HTTP Authorization header.

¢ Includes Bearer access_token
4. Resource Server returns authenticated API payload.

Getting Started

This chapter is designed to walk a ClearPass administrator through the steps
required to get a basic API integration up and running in preparation for the
deployment of a mobile App, such as the QuickAccess App developed by Aruba.

The mobile App will leverage the ClearPass OAuth2 support to authenticate and
authorize a mobile user. All subsequent API calls will be made on behalf of this
user and reflect their privileges on the ClearPass server.

Based on this use case the appropriate OAuth2 grant type will be the Password
grant type as the App is working on data associated with a specific user.

Step 1. Create API Client

Browsing to the Administration > API Services > API Clients menu option, a new
API Client can be defined by clicking on the Create API Client link found in the
top right hand corner of the page.

The API Client definition is the method of establishing a relationship between the
ClearPass Authorization Server and the client application that is being developed
and wishes to leverage the API resources hosted by ClearPass.

Home » Administration » API Services » API Clients

Create API Client

Use this form to create a new API client.

Create API Client

QuickAccess
The unique string identifying this API client. Use this value in the OAuth2 “client_id” parameter.

* Client ID:

Description:

Use this field to store comments or notes about this API client.

Enabled: © Enable API client

BYOD Operator =

* ile:
Operator Profile: The operator profile applies role-based access control to authorized OAuth2 clients.

This determines what API objects and methods are available for use.

a

| Username and password credentials (grant_type=password) =+

* Grant Type:
yp Only the selected authentication method will be permitted for use with this client ID.

 This client is a public (trusted) client
Public clients have no client secret.

Public Client:

& Allow the use of refresh tokens for this client
Refresh Token: An OAuth2 refresh token may be used to obtain an updated access token.
Use grant_type=refresh_token for this.

a

8 s/ | hours B
Specify the lifetime of an OAuth2 access token.

Access Token Lifetime:

14 5 | days B
Specify the lifetime of an OAuth2 refresh token.

«3 Create API Client m

Refresh Token Lifetime:

* required field

Operator Profile

The Operator Profile defines the class of user and privileges associated with the
API access that will be granted to a client application based upon successful
authorization.

The details of the ClearPass privileges associated with a particular operator
profile can be reviewed or modified by browsing to the Administration >
Operator Logins > Profiles menu option.

Grant Type

Referring back to the previous OAuth?2 technology overview, the API Client
definition allows the administrator to currently select from the following
supported grant types:

¢ (Client Credentials
e Resource Owner Password

Future versions of ClearPass will extend the OAuth?2 use cases to cover
Authorization Code and Implicit grant types.

Public Client

In the case that the Password grant type has been selected, the default operation
is to create a Client Secret as shown in the example screenshot below.

AASgc/IS£9bIzG7PtnKAC4£C1LRBSevQtWIkYCEfhyXRt

Client Secret: yse this value in the OAuth2 “client_secret” parameter.
NOTE: This value is encrypted when stored and cannot be displayed again.

As discussed in the OAuth2 technology overview, the client secret must also be
kept secret to avoid potential security breaches. In some deployment scenarios
the App will be deployed as a native mobile App where the operating system and
the App itself cannot be guaranteed to be trusted and any credentials stored
within the App are atrisk of being exposed.

For this reason the password grant type offers the ability to define the API client
as a public client and in this deployment scenario the App does not need to
present the client secret as part of OAuth2 authorization request.

The user of the App needs to make a determination as to whether they trust the
native App before entering in their user credentials to login into the service
provided.

Refresh Token

The refresh token allows an App a method to recover a short-lived access token
from the ClearPass server. The access token is typically short lived to limit the
exposure to a compromised token as the attacker has a limited window in which
to abuse it.

Whilst the refresh token has not expired, an authorized App is able to make
subsequent authorization requests to recover new access tokens and continue to
transact API calls.

The administrator can choose to enable refresh token support on each API client
definition by checking the option shown in the screenshot above.

Access Token Lifetime

The short lived access token lifetime can be defined for each individual API client
to suit the use case of the API access being enabled.

Refresh Token Lifetime

Similarly, if refresh tokens have been enabled for the API client in question, the
lifetime of the refresh time can be customized to suit the use case of the API
access that is being enabled.

Step 2. Ensure API Access Enabled for users

Each operator profile has the ability to define whether APl access is enabled for
that class of users. This setting will override any individual ClearPass privileges
that may have been enabled through the Operator profile elsewhere so it is
critical to ensure this option is enabled for the target users of the App.

Home » Administration » Operator Logins » Profiles

Edit Operator Profile (BYOD Operator)

Use this form to make changes to the operator profile BYOD Operator.

Operator Profile Editor

BYOD Operator

* Name: §
Enter a name for this operator profile.
Operators with this profile can view and manage their own
provisioned devices.
Description:

Comments or descriptive text about the operator profile.

Access
These options control what operators with this profile are permitted to do.

& Allow operator logins

Enabled: N . e wi
If unchecked, operators with this profile will not be able to log in.

 Operator Privileges

2y Administrator No Access
Select operator permissions for system administration and management tasks.
«.‘Q Advertising Services No Access

Select operator permissions for managing advertising content and services.
ﬁe AirGroup Services No Access
Select operator permissions for access to AirGroup services.

API Services Custom...
Select operator permissions for API access and management.

2 Allow API Access No Access (®) Allow Access
Operators with this privilege are permitted to make API calls. Additional privileges are also required, depending on the API.

& Configure SOAP Web Services (Legacy) (@ No Access () Read Only () Full
Operators with this privilege can change system settings for SOAP web services.

& List SOAP Web Services (Legacy) (® No Access () Read Only () Full
Operators with this privilege can browse the available SOAP web services and access the service definitions (WSDL).

2 Manage API Clients (® No Access Read Only Full
Operators with this privilege may view and manage API clients (OAuth2 authentication).

2 SOAP API (Legacy) (® No Access () Read Only () Full

Operators with this privilege can use SOAP web services to perform system functions. Additional privileges are also required, depending on the API.
2 XMLRPC API (Legacy) (®) No Access () Allow Access

Step 3. Verify User Account

As the API client has been configured based on the Password grant type, all API
calls will be to be executed with the context of a user known to ClearPass.
Although various external user databases are supported by ClearPass, this
example will just leverage the local user database.

From the ClearPass Policy Manager administration user interface, select the
Configuration > Identity > Local Users menu option to verify an account already
existing and belong to the appropriate Operator Profile.

If an appropriate account doesn’t exist a new one can be quickly created by
clicking on the +Add button in the top right corner and filling out the required
fields as shown below.

Add Local User o

User ID qa
Name QuickAccess Test
Password eccccccccccccee
Verify Password ecscscccccccene
Enable User # (Check to enable local user)
Role [BYOD Operator] ~|
Attribute Value i
1.|Click to add...

Click the Add button to commit the new user to the ClearPass database.

Step 4. Create Policy Manager Service

In order for ClearPass Policy Manager to successfully authenticate the OAuth2
authorization requests for any of the configured API clients, a new service
definition must be created. ClearPass Policy Manager has a built in wizard for
quickly creating the required service definition to support OAuth2 based API
authorization and this can be created by browsing to the Configuration > Start
Here menu option from within the administration interface.

Scrolling down the list of available service definition wizards the OAuth2 API
User Access wizard can be found towards the bottom.

Lﬂ" Encrypted Wireless Access via 802.1X Public PEAP method

= Service Template for providing encrypted wireless access to (guest) users via fixed 802.1X PEAP credentials

g“ﬁ Guest Access

To authenticate guest users logging in via captive portal. Guests must re-authenticate after their session ends.

Guest Access - Web Login
To authenticate guest users logging in via guest portal.

Q“]T" Guest MAC Authentication

\/Ew To authenticate guest users once using captive portal and later to allow logins using cached MAC Address of the device.

@M Guest Social Media Authentication

=" To authenticate guest users logging in via captive portal with their social media accounts. Guests must re-authenticate after
JE' their session ends.

®&) OAuth2 API User Access

S

4 Service template for API clients authenticating with username and password (OAuth2 grant type "password")

| \

Onboard
J+* Service template for authorizing device credential provisioning and onboarding.

Q"‘]T" User Authentication with MAC Caching
‘,Ew To authenticate users once using captive portal and later to allow logins using cached MAC Address of the device.

Click on the OAuth2 API User Access wizard and fill out a descriptive name for
the service so it can be easily identified in the Policy Manager’s service list in the
future. Click the Add Service button to commit the service to the policy engine.

Configuration » Start Here

Service Templates - OAuth2 API User Access

Name Prefix*: QuickAccess App APl Access

Description
Service template for API clients authenticating with username and password (OAuth2 grant type "password")

<« Back to Start Here

PRI cd Service | Cance |

Now referencing the ClearPass Policy Manager’s service list, the new OAuth2
service definition should be available and enabled for API access as shown in the
screenshot below.

Configuration » Services

Services # Add

& Import
I
25 Export All
= Added 1 service(s)
Filter:| Name ~| contains 3 + “ Clear Filter Show [10 ~f records
() Order A Name Type Template Status

1.‘ O 1 [Policy Manager Admin Network Login Service] TACACS TACACS+ Enforcement ®

2.‘ 2 [AirGroup Authorization Service] RADIUS RADIUS Enforcement (Generic) @

3“ =) 3 [Aruba Device Access Service] TACACS TACACS+ Enforcement ®

4.‘ 4 [Guest Operator Logins] Application Aruba Application Authentication @

5.‘ I 5} g(lii:g;:ccess App API Access OAuth2 APT User Application Aruba Application Authentication I o

Showing 1-5 of 5 Copy | Export | Delete

Step 5. Test API Authorization
The ClearPass OAuth2 authorization endpoint is available using the following
details:

Location Method | Content Type | Payload

/api/oauth POST JSON grant_type, username, password,
client_id, client_secret*

* client_secret required if the API client definition is not configured as public
client.

In order to test the OAuth2 API authorization on ClearPass any basic HTTP client
can be used to craft the API call. There are many browser plugins (RESTClient,
Postman etc) and command line tools available that support this style of API
integration.

The following example is using a widely deployed command line tool found in
many operating systems call cURL. More details on the cURL client can be found
on the following website. (http://curl.haxx.se/)

curl -X POST "https://test.clearpassbeta.com/api/oauth" \

-H "Content-Type: application/json" \

-d $'{"grant_type": "password", "username": "qga", "password":
"abcl23", "client id": "QuickAccess"}' \

-m 30 \

-v.\

-k

* Note - if you are using the Windows version of cURL you may need to remove
the slashes (\) and collapse the entire command into a single line.

[f the configuration of the ClearPass server is correct, a JSON object similar to the
one below should be returned. The JSON object contains the following attribute
value pairs:

* access_token: to token associated with the authorized user

* expires_in:the above access token will expire in x seconds

* token_type : bearer token will be included in all subsequent API calls

* scope: reserved for future use in ClearPass

* refresh token:to be stored to recovering a new access token on expiry

{"access_token":"81d3136c9025c394222d6202375924d30330ce%a", "expires_i
n":28800, "token_ type":"Bearer","scope":null,"refresh token":"2fb63c38
824eb2c0c75b£3894eda9109019b8c86"}

Returning to the ClearPass Policy Manager administration interface, the
Monitoring > Live Monitoring > Access Tracker menu option can be selected and
the successful OAuth2 transactions can be reviewed.

Request Details (]

Login Status: ACCEPT

Session Identifier: W00000004-01-54976e27
Date and Time: Dec 21, 2014 17:04:39 PST
End-Host Identifier: -

Username: qa

Access Device IP/Port: -i-
System Posture Status: UNKNOWN (100)

Service: QuickAccess App API Access OAuth2 API User Access
Authentication Method: Not applicable

Authentication Source: [Local User Repository]

Authorization Source: [Local User Repository]

Roles: [BYOD Operator], [User Authenticated]

Enforcement Profiles: [Operator Login - Local Users]

Service Monitor Mode: Disabled

Online Status: Not Available

fd < Showing 1 of 1-4 records P> [Change Status J| Show Configuration m Show Logs m

Step 6. Test APl Transaction

Now that the OAuth2 authorization step is complete and an access token has
been successfully retrieved from the ClearPass server, any required API calls can
now be made to the server.

In order to reference the context of the authorized user, the access token must be
included in every subsequent API call. As per the OAuth2 specification, this
access token must be included in the HTTP Authorization Header in the
following format.

Authorization: Bearer <access_token>

Using the cURL command again, an API call can be made to a defined API
endpoint that will return all of the ClearPass privileges associated with the user
authorized and associated with the given access token.

Location Method Content Type Payload

/api/oauth/privileges GET n/a n/a

curl -X GET "https://test.clearpassbeta.com/api/oauth/privileges" \
-H "Accept: application/json" \

-H "Authorization: Bearer
cd3f7¢cb063d951e65b43270cfca9cb1d97276556" \

-m 30 \
-v \

-k

* Note - if you are using the Windows version of cURL you may need to remove
the slashes (\) and collapse the entire command into a single line.

The following JSON object details the privileges associated with the authorized
user on the ClearPass server. The notation of the privileges includes a prefix
which denotes the class of access that is enabled:

e # - TBD
e 2 — TBD

For more information of ClearPass API privileges please refer the User Guide in
Chapter XX

{

"privileges": [
"#guest_sessions_history",
"#guest_show_details",
"#mdps_view own_certificate",
"?api_index",
"?guestmanager",
"?mdps_index",

"apigility",
"change_expiration",

"create multi",
"create_user",
"full-user-control",

"guest multi",
"guest_sessions",
"guest_users",

"mac_create",

"mac_list",
"mdps_own_device_delete",
"mdps_own_device_disable",
"mdps_own_device_enable",
"mdps_own_device_manage",
"mdps_shared_device_delete",
"mdps_shared device_disable",
"mdps_shared_device_enable",
"mdps_shared device_manage",
"remove_account",
"reset_password"

At this point successful API access has been established and verified and the App
developers should be in a position to start development and testing against the
ClearPass API service.

Appendix A — OAuth2 Grant Types

Authorization Code

The authorization code grant type is intended for web server applications using
a server side programming language such as PHP or Python where the source
code of the application is not available to the public - hence protecting the client
secret.

The use case for this grant type is to allow a user of the web server application to
grant access to all or some of their data to a 3 party application. A real world
example of this could a social network application requesting access to a user’s
photos on a photo sharing web site. The photo sharing web site is able to expose
their user profiles and data (photos) through an OAuth2 application on their
platform whilst not exposing their client secret in the process.

The following diagram shows the transaction flow of the Authorization code
grant type.

Authorization

Resource + 3rd Party
Owner Resource Server App (Client)
4 5 @ pGthon
> B & 4 3 '
3;.) 4 o) Server side
languages
1R 13

APl Access &= Browser

1. Redirect the user browser to Authorization Server.

* Includes response_type=code, client_id, redirect_uri, scope, state
2. User authenticates and grants authorization to the 3 party App.

¢ User submits their credentials for the Authorization Server
3. Authorization Server now redirects back to the web application (redirect URI)
including the authorization code

¢ Includes authorization code, state
4. Web application verifies the redirect and sends request to exchange the
authorization code for an access token (query param & post body supported)

* Includes response_type=authorization_code, code, client_id, client_secret, redirect_uri
5. Authorization Server returns access token for use in subsequent API calls

* Includes access_token, expiry time, token_type=bearer, refresh_token
6. Web application includes access token in the HTTP Authorization header.

¢ Includes Bearer access_token
7. Resource Server returns authenticated API payload.

Implicit

Browser-based apps run entirely in the browser after loading the source code
from a web page typically based on a client side programming language such as
JavaScript. Since the entire source code is available to the browser, these apps
cannot maintain the confidentiality of their client secret, so the secret is not used
in this case.

Like browser-based apps, mobile apps also cannot maintain the confidentiality of
their client secret. Because of this, mobile apps must also use an OAuth2 flow
that does not require a client secret such as the implicit flow.

Authorization

Resource + 3rd party
Owner Resource Server App (Client)
2
1 '3 1)
é W
3Rl
5K
\,
N\
N
5\ .4

Client side applications

Your
OAuth2 > J S

APl Access «—»

The following diagram shows the transaction flow of the implicit grant type.
1. Redirect the user browser to Authorization Server.

* Includes response_type=token, client_id, redirect_uri, scope, state
2. User authenticates and grants authorization to the 37 party App.

¢ User submits their credentials for the Authorization Server
3. Authorization Server now redirects back to the client side application
(redirect URI) including the access token

¢ Includes access_token, state
4. Client side application recovers the access token from the redirect request.

* Uses client side javascript or registered AppURL for mobile to parse access token
5. Client side application includes access token in the HTTP Authorization
header.

¢ Includes Bearer access_token
6. Resource Server returns authenticated API payload.

Appendix B - OAuth2 Error Messages

{"type":"http://www.w3.0rg/Protocols/rfc2616/rfc2616-
secl@.html","title":"invalid_client","status":400,"detail":"Th
is client is invalid or must authenticate using a client
secret"}

{"type":"http://www.w3.0rg/Protocols/rfc2616/rfc2616-
secl@.html","title":"Forbidden","status":403,"detail":"Client
does not have \u2018Allow API Access\u2019 privilege"}

{"type":"http://www.w3.0rg/Protocols/rfc2616/rfc2616-
secl@d.html","title":"Not
Acceptable","status":406,"detail":'"Cannot honor Accept type
specified"}

